
ft_printf

Because ft_putnbr() and ft_putstr() aren’t enough

Summary:
The goal of this project is pretty straightforward. You will recode printf().

You will mainly learn about using a variable number of arguments. How cool is that??
It is actually pretty cool :)

Version: 10



Contents
I Introduction 2

II Common Instructions 3

III Mandatory part 5

IV Bonus part 7

V Submission and peer-evaluation 8

1



Chapter I

Introduction

You will discover a popular and versatile C function: printf(). This exercise is a great
opportunity to improve your programming skills. It is of moderate difficulty.

You will discover variadic functions in C.

The key to a successful ft_printf is a well-structured and extensible code.

Once this assignment passed, you will be allowed to add your
ft_printf() to your libft so you can use it in your school C
projects.

2



Chapter II

Common Instructions

• Your project must be written in C.

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

• All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, use
cc, and your Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

• To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file _bonus.{c/h} if
the subject does not specify anything else. Mandatory and bonus part evaluation
is done separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a libft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

• Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done

3



ft_printf Because ft_putnbr() and ft_putstr() aren’t enough

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

4



Chapter III

Mandatory part

Program name libftprintf.a
Turn in files Makefile, *.h, */*.h, *.c, */*.c
Makefile NAME, all, clean, fclean, re
External functs. malloc, free, write,

va_start, va_arg, va_copy, va_end
Libft authorized Yes
Description Write a library that contains ft_printf(), a

function that will mimic the original printf()

You have to recode the printf() function from libc.

The prototype of ft_printf() is:

int ft_printf(const char *, ...);

Here are the requirements:

• Don’t implement the buffer management of the original printf().

• Your function has to handle the following conversions: cspdiuxX%

• Your function will be compared against the original printf().

• You must use the command ar to create your library.
Using the libtool command is forbidden.

• Your libftprintf.a has to be created at the root of your repository.

5



ft_printf Because ft_putnbr() and ft_putstr() aren’t enough

You have to implement the following conversions:

• %c Prints a single character.

• %s Prints a string (as defined by the common C convention).

• %p The void * pointer argument has to be printed in hexadecimal format.

• %d Prints a decimal (base 10) number.

• %i Prints an integer in base 10.

• %u Prints an unsigned decimal (base 10) number.

• %x Prints a number in hexadecimal (base 16) lowercase format.

• %X Prints a number in hexadecimal (base 16) uppercase format.

• %% Prints a percent sign.

6



Chapter IV

Bonus part

You don’t have to do all the bonuses.

Bonus list:

• Manage any combination of the following flags: ’-0.’ and the field minimum width
under all conversions.

• Manage all the following flags: ’# +’ (Yes, one of them is a space)

If you plan to complete the bonus part, think about the
implementation of your extra features from the start. This way,
you will avoid the pitfalls of a naive approach.

The bonus part will only be assessed if the mandatory part is
PERFECT. Perfect means the mandatory part has been integrally done
and works without malfunctioning. If you have not passed ALL the
mandatory requirements, your bonus part will not be evaluated at all.

7



Chapter V

Submission and peer-evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double check the names of
your files to ensure they are correct.

Once this assignment passed, you will be allowed to add your ft_printf() to your
libft so you can use it in your school C projects.

++++++++++[>+>+++>+++++++>++++++++++<<<<-]>>>.>---.++++++++++++.++.+++
+++.--.<<++.>>------.------------.+++++++++++++.<<.>>++++++.------------
.-------. +++++++++++++++++++.<<.>>----------------.+++++.+++++++++.---
----------.--.+ ++++++++++++++++.--------.+++++++++++++.<<.>>----------
-------------.+++.+++ ++++.---.----.+++++++++++++++++.---------------
--.-.<<.>>+++++.+++++.<<.>-------...

8


	Introduction
	Common Instructions
	Mandatory part
	Bonus part
	Submission and peer-evaluation

